

Target Specification February 2024

5SNG 0750R170500

LoPak phase leg IGBT module

- V_{CE} = 1700 V
- $I_C = 2x 750 A$
- Ultra low-loss rugged Trench IGBT chipset
- NTC thermistor for temperature sensing
- Cu baseplate for low thermal resistance
- Pre-Applied Thermal Interface Material (TIM) to improve thermal conductivity between module and heat sink
- Industry standard package

Maximum rated values 1)

Parameter	Symbol	Conditions	1	Min.	Max.	Unit
Collector-emitter voltage	Vces	V _{GE} = 0 V, T _{vj} ≥ 25 °C			1700	V
DC collector current	lc				750	Α
Peak collector current	Ісм	$t_p = 1 \text{ ms}$			1200	Α
Gate-emitter voltage	V _{GES}			-20	20	V
DC forward current	I _F				750	Α
Peak forward current	I _{FRM}	t _p = 1 ms			1200	Α
Surge current	I _{FSM}	$T_{vj start}$ = 175 °C, t_p = 10 ms, half-sinewave			TBD	Α
JORT L. V. WOOL		V _{GE} ≤ 15 V, V _{CC} = 1300 V T _{vjstart} ≤ 15	T _{vjstart} ≤ 150 °C		8	
IGBT short circuit SOA	t _{psc}	V _{CE,max} ≤ 1700 V	T _{vjstart} ≤ 175 °C		6	μs
Isolation voltage	V _{isol}	1 min, f = 50 Hz			4000	V
Max Junction temperature	Tvj			-40	175	°C
Junction operating temperature	T _{vj(op)}			-40	175	°C
Case temperature	Tc			-40	125 ²⁾ / 150	°C
Storage temperature	T _{stg}			-40	125	°C
Mounting torques 3)	Ms	Base-heatsink, M5 screws		3	6	Nm
	M _{t1}	Main terminals, M6 screws		3	6	INIII

 $^{^{1)}\,\}text{Maximum}$ rated values indicate limits beyond which damage to the device may occur per IEC 60747

 $^{^{2)}}$ For UL1557 compliance T_{Cmax} must be limited to 125°C

³⁾ For detailed mounting instructions refer to application note 5SYA 2142

IGBT characteristic values 4)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
Collector-emitter breakdown voltage	V _{(BR)CES}	$V_{GE} = 0 \text{ V}, I_C = TBD$	T _{vj} = 25 °C	1700			V
			T _{vj} = 25 °C		2.11		V
Collector-emitter 5) saturation voltage	V _{CEsat}	I _C = 750 A, V _{GE} = 15 V	T _{vj} = 125 °C				V
			T _{vj} = 175 °C		2.74		V
			T _{vj} = 25 °C			0.1	mA
Collector cut-off current	I _{CES}	$V_{CE} = 1700 \text{ V}, V_{GE} = 0 \text{ V}$		0.4		mA	
			T _{vj} = 175 °C		6.8		mA
Gate leakage current	I _{GES}	V_{CE} = 0 V, V_{GE} = \pm 20 V	T _{vj} = 125 °C	-150		150	nA
Gate-emitter threshold voltage	V _{GE(th)}	Ic = 16, V _{CE} = V _{GE}	T _{vj} = 25 °C		5.5		V
Gate charge	Q _G	I _C = 750 A, V _{CE} = 600 V, V _{GE} = -15 V15 V			TBD		μC
Input capacitance	Cies	per switch	T _{vj} = 25 °C		TBD		nF
Internal gate resistance	$R_{g,int}$	per switch			TBD		Ω
		V _{CC} = 900 V, I _C = 750 A,	T _{vj} = 25 °C		190		mJ
Turn-on switching energy	Eon	$R_G = TBD$, $C_{GE} = 0$ nF, $V_{GE} = \pm 15$ V,	T _{vj} = 125 °C				mJ
		L_{σ} = 30 nH, inductive load	T _{vj} = 175 °C		307		mJ
		Vcc = 900 V, Ic = 750 A,	T _{vj} = 25 °C		154		mJ
Turn-off switching energy	E _{off}	$R_G = TBD$, $C_{GE} = 0$ nF, $V_{GE} = \pm 15$ V,	T_{vj} = 125 °C				mJ
		L_{σ} = 30 nH, inductive load	T _{vj} = 175 °C		233		mJ
Short circuit current	Isc	V _{CC} = 1300 V, V _{GE} = 15 V, V _{CEM CHIP} ≤ 1700 V	T _{vj} = 175 °C		TBD		Α

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg Switzerland

Tel: +41 58 586 10 00

E-Mail: salesdesksem@hitachienergy.com

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

 $^{^{\}rm 4)}$ Characteristic values according to IEC 60747 - 9 $^{\rm 5)}$ Collector-emitter saturation voltage is given at chip level

Diode characteristic values 6)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
			T _{vj} = 25 °C	1.91		V
Forward voltage 7)	V _F	I _F = 750 A	T _{vj} = 125 °C			V
		T _{vj} = 175 °	T _{vj} = 175 °C	2.03		V
			T _{vj} = 25 °C	TBD		А
Peak reverse recovery current	Im	T _{vj} =	T _{vj} = 125 °C	TBD		А
			T _{vj} = 175 °C	TBD		А
		Ī	T _{vj} = 25 °C	TBD		μC
Recovered charge	Qrr	$I_F = 750 \text{ A},$ $V_{GE} = \pm 15 \text{ V},$ $T_{vi} = 175 \text{ A}$	T _{vj} = 125 °C	TBD		μC
			T _{vj} = 175 °C	TBD		μC
		- R _G = TBD, C _{GE} = 0 nF, L _{σ} = 30 nH,	T _{vj} = 25 °C	TBD		ns
Reverse recovery time	t _{rr}	dl/dt = TBD, inductive load	T _{vj} = 125 °C	TBD		ns
			T _{vj} = 175 °C	TBD		ns
		Ī	T _{vj} = 25 °C	57		mJ
Reverse recovery energy	E _{rec}	T _{vj} = 125 °C	T _{vj} = 125 °C			mJ
			T _{vj} = 175 °C	145		mJ

⁶⁾ Characteristic values according to IEC 60747 - 2

NTC Thermistor

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Rated resistance	R ₂₅	T _c = 25 °C		5		kΩ
R100	R ₁₀₀	T _c = 100 °C	468		517	Ω
B-value	B _{25/85}	$R_{25} = R_{25} \exp [B_{25/85}(1/T_2 - 1/(298.15K))]$		3375		K
B-value	B _{25/100}	$R_{25} = R_{25} \exp \left[B_{25/100} (1/T_2 - 1/(298.15K)) \right]$		3433		K

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg Switzerland

Tel: +41 58 586 10 00

E-Mail: salesdesksem@hitachienergy.com

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

⁷⁾ Forward voltage is given at chip level

Package properties

Parameter	Symbol	Conditions Min.		Тур.	Max.	Unit	
IGBT thermal resistance junction to case	R _{th(j-c)IGBT}	per switch				0.08	K/W
Diode thermal resistance junction to case	$R_{\text{th(j-c)DIODE}}$	per switch				0.17	K/W
IGBT thermal resistance case to heatsink 8)	R _{th(c-s)IGBT}	IGBT per switch, λ _{Grease} = 1 W/m x	BBT per switch, $\lambda_{Grease} = 1 \text{ W/m x K}$ 0.0				K/W
Diode thermal resistance case to heatsink 8)	R _{th(c-s)DIODE}	Diode per switch, λ _{Grease} = 1 W/m x K			0.038		K/W
Comparative tracking index	CTI			200			·
Module stray inductance	L _{o CE}	per switch			20		nH
			T _C = 25 °C		0.95		
Resistance, terminal-chip	Rcc'-EE'	per switch	T _C = 125 °C		1.35		mΩ
		T _C = 175	T _C = 175 °C		1.55		=

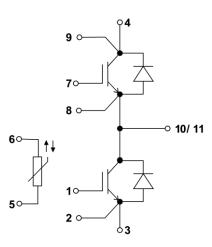
⁸⁾ Depends on heatsink design

Mechanical properties 9)

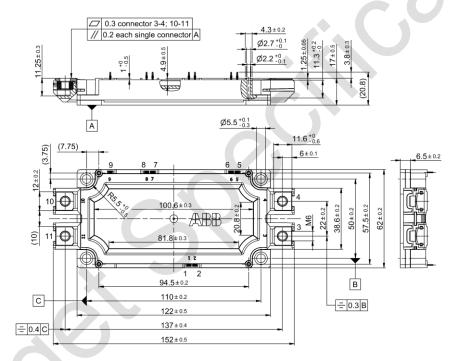
Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
Dimensions	LxWxH	Typical			152 x 62 x 17		mm
Clearance distance in air			Term. to base:	12.5			
	da	According to IEC 60664-1 Term. to base: and EN 50124-1 Term. to base:	Term. to base:	10			_
Surface creepage distance			14.5			– mm	
	d _s		Term. to base:	13			_
Mass	m				350		g

⁹⁾ Package and mechanical properties according to IEC 60747 – 15

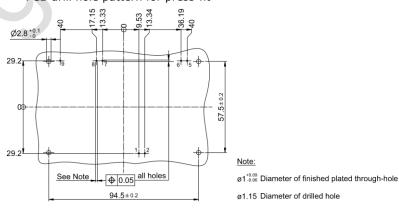
Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg Switzerland


Tel: +41 58 586 10 00

E-Mail: salesdesksem@hitachienergy.com


We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.


Electrical configuration

Mechanical drawing

PCB drill hole pattern for press-fit

Note: all dimensions are shown in millimeters

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3

Fabrikstrasse 3 5600 Lenzburg Switzerland Tel: +41 58 586 10 00

E-Mail: salesdesksem@hitachienergy.com

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

Related documents:

5SYA 2042 Failure rates of IGBT modules due to cosmic rays 5SYA 2045 Thermal runaway during blocking 5SYA 2053 Applying IGBT 5SYA 2057 IGBT diode safe operating area (SOA) 5SYA 2058 Surge currents for IGBT diodes 5SYA 2093 Thermal design of IGBT modules 5SYA 2098 Paralleling of IGBT modules 5SYA 2142 LoPak modules use and installation

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg Switzerland

Tel: +41 58 586 10 00

E-Mail: salesdesksem@hitachienergy.com

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.