

Data sheet 5SYA 1508-01 Nov 22

5SLD 1500J450350

HiPak Diode module

- V_{CE} = 4500 V
- Ic = 2x 1500 A
- Ultra-low-loss, rugged SPT++ diode
- Exceptional ruggedness and highest current rating
- High insulation package, 2 Diodes in 1
 package
- AISiC base-plate and AIN substrate for low thermal resistance and high power cycling capability

Hitachi Energy

Maximum rated values 1)

Parameter	Symbol	Conditions	Min.	Max.	Unit
Repetitive peak reverse voltage	Vrrm	T _{vj} ≥ 25 °C		4500	V
Rated forward current ²⁾	lF			1500	А
Peak forward current	I _{fm}	t _p = 1 ms		3000	А
Maximum RMS current	IFRMS	per Diode, T_C = 110 °C, $T_{Terminal} \le 60$ °C		1030	А
Surge current	I _{fsm}	$T_{vj \text{ start}} = 150 \text{ °C}, t_p = 10 \text{ ms},$ half-sinewave		13200	А
Isolation voltage	V _{isol}	1 min, f = 50 Hz		10200	V
Max Junction temperature	T _{vj}		-40	150	°C
Junction operating temperature	T _{vj(op)}		-40	150	°C
Case temperature	Tc		-40	125	°C
Storage temperature	T _{stg}		-40	125	°C
	Ms	Base-heatsink, M6 screws	4	6	
Mounting torques 3)	M _{t1}	Main terminals, M8 screws	8	10	Nm
	M _{t1}	Main terminals, M6 screws	8	10	_

¹⁾ Maximum rated values indicate limits beyond which damage to the device may occur per IEC 60747

²⁾ Based on the current rating per diode die

³⁾ For detailed mounting instructions refer to application note 5SYA 2039

Diode characteristic values 4)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
			T _{vj} = 25 °C		2.55		V
Forward voltage 5)	VF	I _F = 1500 A	T _{vj} = 125 °C		2.8		V
			T _{vj} = 150 °C		2.75		V
		V _R = 4500 V	T _{vj} = 25 °C			1	mA
Continuous reverse current	IR		T _{vj} = 125 °C		8.5		mA
			T _{vj} = 150 °C		48		mA
			T _{vj} = 25 °C		1900		А
Peak reverse recovery current	Irm	- - V _{CC} = 2800 V, I _F = 1500 A,	T _{vj} = 125 °C		2089		А
			T _{vj} = 150 °C		2130		А
Recovered charge			T _{vj} = 25 °C		1570		μC
	Qrr		T _{vj} = 125 °C		2492		μC
		V _{GE} = ±15 V, R _G = 1.5 Ω, C _{GE} = 220 nF,	T _{vj} = 150 °C		2863		μC
Reverse recovery time		$L_{\sigma} = 150 \text{ nH},$ dl/dt = 4.83 kA / µs, inductive load switch: 5SNA 1500G450300	T _{vj} = 25 °C		1780		ns
	t _{rr}		T _{vj} = 125 °C		1930		ns
			T _{vj} = 150 °C		2730		ns
	Erec		T _{vj} = 25 °C		2730		mJ
Reverse recovery energy			T _{vj} = 125 °C		4602		mJ
			T _{vj} = 150 °C		5389		mJ

 $^{\rm 4)}$ Characteristic values according to IEC 60747 - 2

⁵⁾ Forward voltage is given at chip level

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3

5600 Lenzburg Switzerland Tel: +41 58 586 10 00

E-Mail: salesdesksem@hitachienergy.com

www.hitachienergy.com/semiconductors

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

Package properties

Parameter	Symbol	Conditions Min.		Тур.	Max.	Unit
Diode thermal resistance junction to case	R _{th(j-c)DIODE}	per Diode			0.016	K/W
Diode thermal resistance case to heatsink	Rth(c-s)DIODE	per Diode, λ grease = 1W/m x K		0.011		K/W
Partial discharge voltage	Ve	$f = 50 \text{ Hz}, \text{ Q}_{PD} \le 10 \text{pC} \text{ (acc. to IEC 61287)} 5100$				V
Comparative tracking index	СТІ		600			
Module stray inductance	L_{\sigmaAC}	per Diode		54		nH
		T _C = 25 °C	-	0.2		
Resistance, terminal-chip	RA1C1 Diode	T _c = 125 °C		0.3		mΩ
		T _c = 150 °C		0.33		_

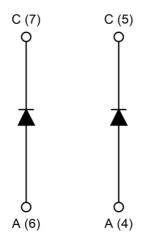
Mechanical properties ⁶⁾

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
Dimensions	L x W x H	Typical			130 x 140 x 48		mm
Clearance distance in air	da		Term. to base: 40	40			
		According to IEC 60664-1 and EN 50124-1	Term. to base:	26			— mm
Surface creepage distance	ds		Term. to base:	64			
			Term. to base:	56			-
Mass	m				980		g

⁶⁾ Package and mechanical properties according to IEC 60747 – 15

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg

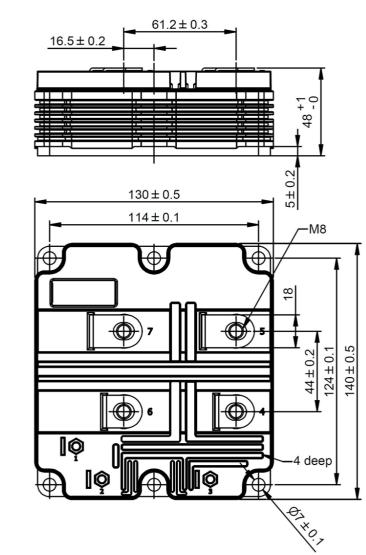
Switzerland Tel: +41 58 586 10 00


E-Mail: salesdesksem@hitachienergy.com

www.hitachienergy.com/semiconductors

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.


Electrical configuration

-Label

 36.5 ± 0.5

Mechanical drawing

screwing depthmax. 16

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg Switzerland Tel: +41 58 586 10 00

E-Mail: salesdesksem@hitachienergy.com

www.hitachienergy.com/semiconductors

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

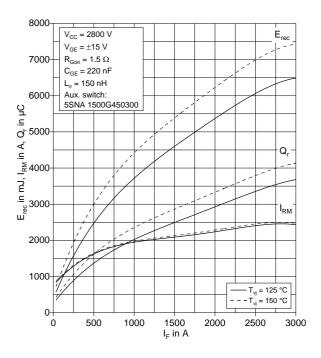


Fig. 1 Typical reverse recovery characteristics vs. forward current

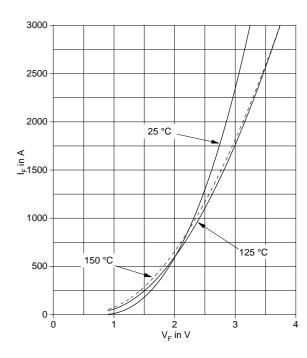


Fig. 3 Typical diode forward characteristics chip level

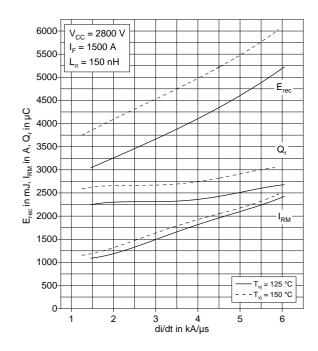


Fig. 2 Typical reverse recovery characteristics vs. di/dt

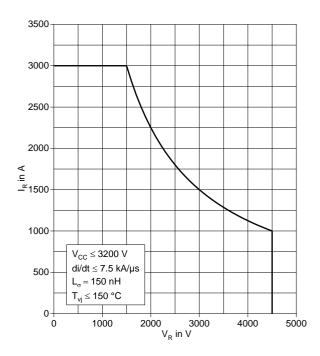
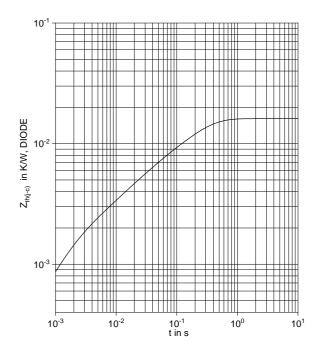


Fig. 4 Diode turn-off safe operating area (DSOA)

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3


5600 Lenzburg Switzerland Tel: +41 58 586 10 00

E-Mail: salesdesksem@hitachienergy.com

www.hitachienergy.com/semiconductors

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

Analytical function for transient thermal impedance:

 $Z_{\text{th}(j-c)}(t) = \sum_{i=1}^{n} R_{i}(1 - e^{-t/\tau_{i}})$

	i	1	2	3	4	5
DE	Ri(K/kW)	1.95	6.11	5.9	2.06	
OI	τi(ms)	2283	160	32	2.7	

Fig. 5 Thermal impedance vs time

Related documents:

5SYA 2042 Failure rates of IGBT modules due to cosmic rays 5SYA 2043 Load – cycle capability of HiPaks

5SYA 2045 Thermal runaway during blocking

5SYA 2057 IGBT diode safe operating area (SOA)

5SYA 2058 Surge currents for IGBT diodes

5SYA 2093 Thermal design of IGBT modules

5SYA 2039 Mounting instructions for HiPak modules

5SZK 9111 Specification of environmental class for HiPak Storage 5SZK 9112 Specification of environmental class for HiPak Transportation 5SZK 9113 Specification of environmental class for HiPak Operation (Industry)

5SZK 9120 Specification of environmental class for HiPak

Hitachi Energy Switzerland Ltd Semiconductors Fabrikstrasse 3 5600 Lenzburg

Switzerland Tel: +41 58 586 10 00

E-Mail: salesdesksem@hitachienergy.com

www.hitachienergy.com/semiconductors

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

Hitachi Energy Ltd. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.