主營產品,優(yōu)勢供應,充足庫存:
ABB、SIEMENS、FOXOBORO、ALLEN BRADLEY、EMERSON、TRICONEX、HP、XYCOM、GE FAUNC、ALSOM MOTOROLA、YASKAWA、OVATION、KUKA、Kollmorgen科爾摩根、LUST路斯特、EATON Moeller穆勒、ENDRESS & HAUSER E+H、PEPPERL & FUCHS倍加福P+F、TRITRONICS美國、WESTINGHOUSE西屋、GRUNDFOS、PROFIBUS、BENTLY、CKD CORP、Cognex康耐視、FESTO ELECTRIC、德國SEW EURODRIVE、SST、ELAU德國、德國西克SICK、Slimpak美國、SMC日本、HMS瑞典、BOSCH REXROTH、BERGHOF德國貝格霍夫、ROSEMOUNT羅斯蒙特、SEAGATE希捷、puls普爾世、美國斯動耐爾Stonel、美國BODINE、IDEC日本和泉、WOODWARD伍德沃德、PULNIX、STOCK美國、美國普羅索富特PROSOFT、LENZE德國倫茨、BAUMER瑞士堡盟、INFICON德國英福康、TECO東元電機、BannerMOTOROLA、Schneider、Fisher等等國外進口品牌
MOOG G771K202 MODULE 3507 1322
MOOG G771K226 MODULE 3507 1322
MOOG G772K240 MODULE 3507 1322
MOOG 152F-423 SERVOMOTOR CONTROLLER 10AMP CONT 3500 999 900
MOOG D661-Z187A SOLENOID VALVE 350/210BAR 15VDC 3478 2087 1739
MOOG T-1-V8-030-17-02-00 SERVO MOTOR 7.4-30NM 4.76AMP 1.6KW 325V 3000RPM 3411 2047 1365
MOOG FAS-T-1-V8-030-17-02-00 SERVO MOTOR 3411 1855 1490
MOOG T2S2030000216 MOTOR 3402 1360
MOOG 7-58000-4H CAMERA CONTROL QUICKSET ANALOG PAN AND TILT 115V 3335 2001 1668
MOOG D123F026A005 BOARD 3307 1044
MOOG T164-903A-10-C3-2-1A DIGITAL MOTOR CONTROLLER I/P 300-350V O/P 350VDC 3296 1978 1648
MOOG G771K615 VALVE 3294 1170
MOOG G413404 SERVO MOTOR 3272 1309
MOOG G771K616 VALVE 3261 1229
MOOG D128-007-A001 POWER SUPPLY 3209 1926 333
MOOG A58782-001 INTERFACE BOARD 3187 1913 1594
MOOG D633360B MODULE 3184 1200
MOOG D633460B SERVO VALVE 3178
MOOG D143-707-A011 PC BOARD 3090 1500 1350
MOOG D143-502-A002 PC BOARD 3090 1500 1350
MOOG G403624A SERVO MOTOR 2277 1366 911
MOOG T160-902-E-00-1A POWER SUPPLY 2266 1360 11331. 防止步進電機運行時出現失步和誤差
步進電機是一種性能良好的數字化執(zhí)行元件,在數控系統的點位控制中,可利用步進電機作為驅動電機。在開環(huán)控制中,步進電機由一定頻率的脈沖控制。由PLC直接產生脈沖來控制步進電機可以有效地簡化系統的硬件電路,進一步提高可靠性。由于PLC是以循環(huán)掃描方式工作,其掃描周期一般在幾毫秒至幾十毫秒之間,因此受到PLC工作方式的限制以及掃描周期的影響,步進電機不能在高頻下工作。例如,若控制步進電機的脈沖頻率為4000HZ,則脈沖周期為0.25毫秒,這樣脈沖周期的數量級就比掃描周期小很多,如采用此頻率來控制步進電機。則PLC在還未完成輸出刷新任務時就已經發(fā)出許多個控制脈沖,但步進電機仍一動不動,出現了嚴重的失步現象。若控制步進電機的脈沖頻率為100HZ,則脈沖周期為10毫秒,與PLC的掃描周期約處于同一數量級,步進電機運行時亦可能會產生較大的誤差。因此用PLC驅動步進電機時,為防止步進電機運行時出現失步與誤差,步進電機應在低頻下運行,脈沖信號頻率選為十至幾十赫茲左右,這可以利用程序設計加以實現。
2. 保證定位精度與提高定位速度之間的矛盾
步進電機的轉速與其控制脈沖的頻率成正比,當步進電機在極低頻下運行時,其轉速必然很低。而為了保證系統的定位精度,脈沖當量即步進電機轉一個步距角時刀具或工作臺移動的距離又不能太大,這兩個因素合在一起帶來了一個突出問題:定位時間太長。例如若步進電機的工作頻率為20HZ,即50ms走一步,取脈沖當量為δ=0.01mm/步,則1秒鐘刀具或工作臺移動的距離為20x0.01=0.2mm,1分鐘移動的距離為60x0.2=12mm,如果定位距離為120mm,則定位時間需要10分鐘,如此慢的定位速度在實際運行中是難以忍受的。
為了保證定位精度,脈沖當量不能太大,但卻影響了定位速度。因此如何既能提高定位速度,同時又能保證定位精度是一項需要認真考慮并切實加以解決的問題。
3. 可變控制參數的在線修改
PLC應用于點位控制時,用戶顯然希望當現場條件發(fā)生變化時,系統的某些控制參數能作相應的修改,例如步進電機步數的改變,速度的調整等。為滿足生產的連續(xù)性,要求對控制系統可變參數的修改應在線進行。盡管使用編程器可以方便快速地改變原設定參數,但編程器一般不能交現場操作人員使用;雖然利用PLC的輸入按鍵并配合軟件設計也能實現控制參數的在線修改,但由于PLC沒有提供數碼顯示單元,因此需要為此單獨設計數碼輸入顯示電路,這又將極大地占用PLC的輸入點,導致硬件成本增加,而且操作不便,數據輸入速度慢。所以,應考慮開發(fā)其他簡便有效的方法實現PLC的可變控制參數的在線修改。
4. 其他問題
為了實現點位控制過程中數字變化的顯示及故障輸出代碼的顯示等要求,另外還得單獨設計PLC的數碼輸出顯示電路。由于目前PLC I/O點的價格仍較高,因此應著重考慮選用能壓縮顯示輸出點的合適方法。此外,為保證控制系統的安全與穩(wěn)定運行,還應解決控制系統的安全保護問題,如系統的行程保護、故障元件的自動檢測等。
三、控制系統方案
1. 將定位過程劃分為脈沖當量不同的兩個階段
要獲得高的定位速度,同時又要保證定位精度,可以把整個定位過程劃分為兩個階段:粗定位階段和精定位階段。這兩個階段均采用相同頻率的脈沖控制步進電機,但采用不同的脈沖當量。粗定位階段:由于在點位過程中,刀具不切削工件,因此在這一階段,可采用較大的脈沖當量,如0.1mm/步或1mm/步,甚至更高。例如步進電機控制脈沖頻率為20HZ,脈沖當量為0.1mm/步,定位距離為120mm,則走完全程所需時間為1分鐘,這樣為速度顯然已能滿足要求。精定位階段:當使用較大的脈沖當量使刀具或工作臺快速移動至接近定位點時,(即完成粗定位階段),為了保證定位精度,再換用較小的脈沖當量進入精定位階段,讓刀具或工作臺慢慢趨近于定位點,例如取脈沖當量為0.01mm/步。盡管脈沖當量變小,但由于精定位行程很短(可定為全行程的五十分之一左右),因此并不會影響到定位速度。
為了實現上述目的,在機械方面,應采用兩套變速機構。在粗定位階段,由步進電機直接驅動刀具或工作臺傳動,在精定位階段,則采用降速傳動。這兩套變速機構使用哪一套,由電磁離合器控制。
2. 應用功能指令實現BCD碼撥盤數據輸入
目前較為先進的PLC不僅具有滿足順序控制要求的基本邏輯指令,而且還提供了豐富的功能指令。如果說基本邏輯指令是對繼電器控制原理的一種抽象提高的話,那么功能指令就象是對匯編語言的一種抽象提高。BCD碼數據撥盤是計算機控制系統中常用到的十進制撥盤數據輸入裝置。撥盤共有0~9+個位置,每一位置都有相應的數字指示。一個撥盤可代表一位十進制數據,若需輸入多位數據,可以用多片BCD碼撥盤并聯使用。
筆者選用BCD碼撥盤裝置應用于PLC控制的系統,這樣無需再設計數碼輸入顯示電路,有效地節(jié)省了PLC的輸入點,簡化了硬件電路,并利用先進的功能指令實現數據的存儲和傳輸,因此能極方便地實現數據的在線輸入或修改(如計數器設定值的修改等),若配合簡單的硬件譯碼電路,就可顯示有關參數的動態(tài)變化(如電機步數的遞減變化等)。為避免在系統運行中撥動撥盤可能給系統造成的波動,最好設置一輸入鍵,當確認各片撥盤都撥到位后再按該鍵,這時數據才被PLC讀入并處理。